Conservative difference methods for the Klein–Gordon–Zakharov equations
نویسندگان
چکیده
منابع مشابه
University of Cambridge Conservative Methods for the Toda Lattice Equations Conservative Methods for the Toda Lattice Equations
We are concerned with the numerical integration of the Toda lattice equations by using diierent conservative methods. Numerical experiments suggest that the global error for isospectral schemes decreases exponentially with time but it is almost constant for either symplectic or more general integrators. We provide a theoretical explanation for these experimental ndings.
متن کاملConservative numerical methods for model kinetic equations
A new conservative discrete ordinate method for nonlinear model kinetic equations is proposed. The conservation property with respect to the collision integral is achieved by satisfying at the discrete level approximation conditions used in deriving the model collision integrals. Additionally to the conservation property, the method ensures the correct approximation of the heat uxes. Numerical ...
متن کاملConservative Numerical Methods for the Full von Kármán Plate Equations
This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary conditions. This system is composed of three equations describing the time evolution of the transverse displacement field, as well as the two longitudinal displacements. Pa...
متن کاملMimetic finite difference methods for diffusion equations ∗
This paper reviews and extends the theory and application of mimetic finite difference methods for the solution of diffusion problems in strongly heterogeneous anisotropic materials. These difference operators satisfy the fundamental identities, conservation laws and theorems of vector and tensor calculus on nonorthogonal, nonsmooth, structured and unstructured computational grids. We provide e...
متن کاملFinite difference Methods for fractional differential equations
In this review paper, the finite difference methods (FDMs) for the fractional differential equations are displayed. The considered equations mainly include the fractional kinetic equations of diffusion or dispersion with time, space and time-space derivatives. In some way, these numerical methods have similar form as the case for classical equations, some of which can be seen as the generalizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2007
ISSN: 0377-0427
DOI: 10.1016/j.cam.2006.05.008